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Summary

LSE and LSM fields in generalized planar guiding

structures are shown to be coupled only by means

of the edge condition, which can be fulfilled as

a final step in the analysis. This is utilized

by applying the singular integral equation me-

thod to fin-lines. Modes up to the 20th are thus

easily computed.

INTRODUCTION

In generalized planar guiding structures, thin
metal strips are printed at air-dielectric or

dielectric-dielectric interfaces as shown in Fig.

1. If these strips are assumed to be infinite-

simally thin and perfectly conducting, LSE and

LSM fields can be excited independently. This

will be shown in the first part of our contri-

bution. This decoupling between both parts of

the general field offers great advantages for

the analysis in the space domain as is illus-

trated in the second part by applying the sin-

gular integral equation technique to fin-lines.

DECOUPLING OF LSE ANO LSM MODES

Assuming propagation in z-direction (Fig. 1), the

LSE field can be expressed in terms c]f 2 scalar

potentials in sub-regions 1 and 2, which must sa-

tisfy the scalar Helmholtz equation.

Fig. 1 Generalized planar guiding structure.

The interface conditions at the (x=O)-plane are

~(1)= ~(2)=E E(1)=42) (l)_J2~J ~(2)_H(l)_
z and H

Y Y Y’ z Zz Y’ Y Y-
J ~_z the surface current densitywith .ls=Jy~y+J e

z

and Ev, e unit vectors in y- and z-direction,
—z

respectively.

One can prove from the relations between the trans-

verse field components and the potentials that

Ez-dEy/dy; Jz-dJy/dy. (1)

Hence the LSE field is completely characterized by
Ey and J .

Y

Another important relation follows from the same

equations: Both ~t=EyEy+EzQz and ~ have zero trans-

verse divergence.

~t”&t=o; yt.gs=o. (2)

~t means the grad-operator in the y-z-plane.

A similar analysis holds for the LSM field. The
interface conditions at the (x=O)-plane are of
course the same as above. Studying the relation be-

tween the field components and the scalar poten-

tial functions one finds

Ey-dEz/d . Jy-dJz/d (3)
Y’ Y

instead of (1) and

~“(~xEt)=O; _n“(~xJs)=O (4)

instead of (2). ~ means unit vector in x-direction

(i.e. normal to the air-dielectric interface).

Eqs. (3) show that the LSM field is completely
characterized by Ez and Jz, while eqs. (4) state

that both Et and ~s have zero normal curl.

One can summarize that the LSE as well as the LSM

field alom fulfill the interface conditions with

(2) and (4) being additional characteristic fea-

tures. (Nevertheless they have been assumed to be
coupled in all respective papers which are known

to the authors). The edge condition /l/ will, how-
ever, establish a coupling between the LSE and the
LSM fields. This can be proven in the following

way: Both E and J are singular at the edges of
the strips ‘wherea~ Ez and Jy are non–singular

here (namely they are vanishing). For the LSE
field eqs. (1) hold. Taking in mind that the de-

rivative of a function is stronger singular than

the function itself, one recognizes that (1) is in
contradiction to the edge condition as far as Ez
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is concerned. The same conclusion holds for a LSM
field concerning the surface current component J .

Hence a linear combination of LSE and LSM fieldsy
must be used in order to fulfill the edge condition.

In fact the LSE part in this combination is re-
sponsible of the Jz-singular.ity whereas the LSM
part is responsible of the E -singularity. Such a

coupling of both parts of th~ total field can, how-

ever, be performed as final step of the analysis,

i.e. both the LSE and the LSM field can be treated
independently up to this step.

fin independent analysis of LSE and LSM fields has

already been performed in the spectral domain, /2/
- /8/. It has been shown there to be very efficient.

In /2/ - /5/ both LSE and LSM parts have been coup-

led in the spectral domain as a final step in the

analysis. The necessity of such a coupling has not

been justified. In /6/ - /8/ the coupling has been
introduced in order to eliminate a matrix singu-
larity. A physical reason could not be given.

The decoupling of LSE and LSM fields in the sense
defined above is still more important for space

domain techniques, in which the problem is des-
cribed by integral rather than by algebraic equa-
tions. Dealing with uncoupled integral equations
facilitates the work to a large extent in parti-

cular for planar structures with multi-layer di-

electric.

SINGULAR INTEGRAL EQUATION TECHNIQUE

One of the most powerful space domain techniques is

the singular integral equation technique, which has

been used in /9/ - /11/ in solving many waveguide
problems. It has also been used in /12/ for the

analysis of microstrip lines. Using this technique
for an analysis of generalized planar structures

has the same advantages as the well-known and widely
used Galerkin method in the spectral domain: the

small order of the matrix characterizing the pro-

blem. For the dominant and the first few higher

-order modes of any planar guiding structure, the
Galerkin method in spectral domain is superior over

all other methods, because the order of the matrix
may be as low as 4 (corresponding to 2 basis func-

tions for each component of either strip current or

slot electric field) for still excellent accuracy.
For higher-order modes up to the 10th or 20th,
which are needed in the analysis of discontinuities,

2 basis functions are not sufficient to approximate

the real field, so that the order of the matrix

must be increased considerably. In this case the

singular integral equation method becomes preferable,

because a matrix of order 7 is quite sufficient for

achieving accurate results up to the 30th mode.

Utilizing the decoupling between LSE and LSM fields
derived above, the singular integral equation me-

thod leads to 2 uncoupled singular integral equa-
tions which are solved straightforward. In a sub-

sequent final step the coupling is then taken into
account in order to fulfill the edge condition. The
procedure will be illustrated by analyzing the

structure sketched in Fig. 2.

~-z

t’

II
b

%

‘-l s, ‘1 ‘1

10 dl d

Fig. 2 Generalized unilateral fin-line.

At the interface at x.0, four functions are defined

via

Comparing with (2) and (4) it can be seen that the
first two represent the LSM part of the field while

the latter two represent the LSE part. These func-

tions can be expanded into Fourier series with two

sets of unknown coefficients. The boundary condi-

tions

df: df~

~.O=f~ on the fins, f~=O. — in the slot
dy

result in two singular integral equations which

are solved in terms of two infinite series with ex-

ponentially vanishing coefficients. The series are

truncated behind the N-th term so that (2N) equa-

tions are obtained /11/. One recognizes that the

boundary condition on the fins guarantees only that
E and E

z
satisfy Laplace equation. Hence E= or E

Y Y
must be set to zero at the edges in order to ful-
fill ~t=O on the fins. Thus one coupling relation

between the LSE and LSM fields is established. Simi-
lar& a second coupling relation arises by equating

one of the components of the surface current density

to zero at the edges of the fins. These 2 equations

together with tie other (2N) equations obtained from

the standard solution of the 2 singular integral

equations constitute a homogeneous system of linear

equations, from which the propagation constants and

the field distributions of the different modes are

obtained.

NUMERICAL RESULTS

To illustrate the fast convergence of the truncation,

the propagation constants of the first modes of a

bilateral fin-line have been calculated for a matrix

order of 5, 7, and 9 (i.e. truncating the infinite
series behind the 2nd, 3rd, and 4th term, respec-

tively). The results in Table 1 show that orders

of 7 and 9 nearly give the same propagation con-

stants. The dispersion characteristics of the first

two modes in a bilateral fin-line are shown in Fig.
3 and for another slot width in Fig. 4. Circles

and crosses mark results taken from /13/. The agree-
ment is very good. The same holds for the plots of

E versus slot width w (Fig. 5). The results to
eff

be compared with have now been taken from /4/.
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Fig. 3 Bilateral fin-line
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Fig. 4 Bilateral fin-line
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Fig. 5 Unilateral fin-line

,:~w I ‘2 3 4 5 , 7 8 9 10

5x5 0,665 -.jO.769 -jl.672 -jl.763 -jl.889 -j2.004 -j2.467 -j2.536 -j2.731 -,j3.206

7x7 0.658 -jO.772 -jl.672 -jl.763 -jl.889 -j2.007 -j2.467 -j2.537 -j2.732 -j3.206

9X9 0.656 -jO.773 -.jl.672 -jl.763 -jl.889 -j2.008 -j2.467 -j2.538 -j2.732 -j3.206

Table 1: The propagation constants of the first 20 modes in a bilateral fin-line.

y= I ,2 ,3 ,& ,5 ,6 ,7 ,8 ,9 Z.
matrix 11

order
5x5 -j3.262 -j3.494 -j3.596 -.13..605 -j3.687 -J “3.931 -j3.961 -j4.019 -jb.lld -j4.432
7X7 -j 3.262 -j3.494 -j3.596 -j3.605 -j3.687 -j3.931 -j3.961 -j4.019 -j4.112 -j4.432

9x9 -j 3.262 -j3.494 -j3.596 -j3.605 -j3.687 -j3.931 -j3.961 -j4.019 -j4.112 -j4.432
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